NCCN Thymomas and Thymic Carcinomas
NCCN Evidence Blocks™

Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

To find clinical trials online at NCCN Member Institutions, click here: nccn.org/clinical_trials/clinicians.aspx.

NCCN Categories of Evidence and Consensus: All recommendations are category 2A unless otherwise indicated.

See NCCN Categories of Evidence and Consensus.

The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Evidence Blocks™ and NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Evidence Blocks™, NCCN Guidelines, and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2019.
NCCN EVIDENCE BLOCKS CATEGORIES AND DEFINITIONS

<table>
<thead>
<tr>
<th>E</th>
<th>S</th>
<th>Q</th>
<th>C</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Efficacy of Regimen/Agent</td>
<td>5</td>
<td>Usually no meaningful toxicity: Uncommon or minimal toxicities; no interference with activities of daily living (ADLs)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Very effective: Cure unlikely but sometimes provides long-term survival advantage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Moderately effective: Modest impact on survival, but often provides control of disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Minimally effective: No, or unknown impact on survival, but sometimes provides control of disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Palliative: Provides symptomatic benefit only</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quality of Evidence

<table>
<thead>
<tr>
<th>E</th>
<th>S</th>
<th>Q</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Highly effective: Cure likely and often provides long-term survival advantage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Very effective: Cure unlikely but sometimes provides long-term survival advantage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Moderately effective: Modest impact on survival, but often provides control of disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Minimally effective: No, or unknown impact on survival, but sometimes provides control of disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Palliative: Provides symptomatic benefit only</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consistency of Evidence

<table>
<thead>
<tr>
<th>E</th>
<th>S</th>
<th>Q</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Highly consistent: Multiple trials with similar outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mainly consistent: Multiple trials with some variability in outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>May be consistent: Few trials or only trials with few patients, whether randomized or not, with some variability in outcome</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Inconsistent: Meaningful differences in direction of outcome between quality trials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Anecdotal evidence only: Evidence in humans based upon anecdotal experience</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Affordability of Regimen/Agent (includes drug cost, supportive care, infusions, toxicity monitoring, management of toxicity)

<table>
<thead>
<tr>
<th>E</th>
<th>S</th>
<th>Q</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Very inexpensive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Inexpensive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Moderately expensive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Expensive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Very expensive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INITIAL EVALUATION

- Chest CT with contrast
- Serum beta-HCG, AFP, if appropriate
- CBC, platelets
- PET/CT scan (whole-body or skull base to mid-thigh), as clinically indicated
- Pulmonary function tests, as clinically indicated
- Chest MRI with contrast, as clinically indicated

Thymic tumor likely

Thymic tumor unlikely → Consider tissue biopsy → See disease-specific guidelines as appropriate (NCCN Table of Contents)

See Initial Management (THYM-2)

a When assessing a mediastinal mass, detection of thymic malignancy versus thymic cyst can be better discriminated with chest MRI compared to chest CT, potentially avoiding an unnecessary thymectomy.

b Well-defined anterior mediastinal mass in the thymic bed, tumor markers negative, absence of other adenopathy, and absence of continuity with the thyroid.

Note: For more information regarding the categories and definitions used for the NCCN Evidence Blocks™, see page EB-1.

All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
Thymic tumor likely

All patients should be managed by a multidisciplinary team with experience in the management of thymoma and thymic carcinoma

<table>
<thead>
<tr>
<th>Surgically resectable<sup>c</sup></th>
<th>Surgical resection<sup>d</sup> (total thymectomy and complete excision of tumor)</th>
<th>See Postoperative Management (THYM-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locally advanced, unresectable<sup>c</sup></td>
<td>Tissue diagnosis with core needle biopsy or open biopsy (Avoid transpleural approach)</td>
<td>See Treatment (THYM-4)</td>
</tr>
</tbody>
</table>

^bWell-defined anterior mediastinal mass in the thymic bed, tumor markers negative, absence of other adenopathy, and absence of continuity with the thyroid.

^cDetermination of resectability should be made by a board-certified thoracic surgeon, with primary focus on thoracic oncology.

^dSee Principles of Surgical Resection (THYM-A).

Note: For more information regarding the categories and definitions used for the NCCN Evidence Blocks™, see page EB-1.

All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
POSTOPERATIVE TREATMENT

- **R0 resection**
 - Thymoma, no capsular invasion or thymic carcinoma, stage I
 - Surveillance for recurrence with chest CT\(^i\) with contrast every 6–12 mo for 2 y, then annually\(^h\) for 5 y for thymic carcinoma and 10 y for thymoma
 - \(\rightarrow\) Recurrent disease, see THYM-4

- **R1 resection**
 - Thymoma or thymic carcinoma, capsular invasion present stages II–IV
 - Consider Postoperative RT\(^f\)
 - Thymoma
 - Postoperative RT\(^f\)
 - Thymic carcinoma
 - Postoperative RT\(^f\) ± chemotherapy\(^g\)
 - Surveillance for recurrence with chest CT\(^i\) with contrast every 6 mo for 2 y, then annually\(^h\) for 5 y for thymic carcinoma and 10 y for thymoma
 - \(\rightarrow\) Recurrent disease, see THYM-4

- **R2 resection**
 - Thymoma
 - Definitive RT\(^f\) ± chemotherapy\(^g\)
 - Thymic carcinoma
 - Definitive RT\(^f\) + chemotherapy\(^g\)

\(^d\)See Principles of Surgical Resection (THYM-A).

\(^e\)R0 = no residual tumor, R1 = microscopic residual tumor, R2 = macroscopic residual tumor.

\(^f\)See Principles of Radiation Therapy (THYM-B).

\(^g\)See Principles of Systemic Therapy for Thymic Malignancies (THYM-C).

\(^h\)The duration for surveillance has not been established.

\(^i\)MRI is an appropriate alternative to CT in certain clinical situations.

Note: For more information regarding the categories and definitions used for the NCCN Evidence Blocks™, see page EB-1.

All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
LOCALLY ADVANCED, ADVANCED, OR RECURRENT DISEASE

Thymoma or thymic carcinoma: All patients should be managed by a multidisciplinary team with experience in the management of thymoma and thymic carcinoma.

Locally advanced

Potentially resectable^{c,d} → Chemotherapy^g → Surgery^d → Consider chemotherapy^g or RT^f

Evidence of extrathoracic metastases → Chemotherapy^g

Solitary metastasis or ipsilateral pleural metastasis

Unresectable^c → Concurrent chemoradiation^{f,g}

Resectable^{c,d} → Surgical resection^d of primary tumor and isolated metastases → Consider postoperative RT^f

Chest CTⁱ with contrast • PET/CT (whole-body or skull base to mid-thigh) as clinically indicated

Unresectable^c → RT^f ± chemotherapy^g

Surveillance for recurrence with chest CTⁱ with contrast every 6 mo for 2 y, then annually^h for 5 y for thymic carcinoma and 10 y for thymoma

^cDetermination of resectability should be made by a board-certified thoracic surgeon, with primary focus on thoracic oncology.
^dSee Principles of Surgical Resection (THYM-A).
^eSee Principles of Systemic Therapy for Thymic Malignancies (THYM-C).
^fSee Principles of Radiation Therapy (THYM-B).
^gThe duration for surveillance has not been established.
^hMRI is an appropriate alternative to CT in certain clinical situations.

Note: For more information regarding the categories and definitions used for the NCCN Evidence Blocks™, see page EB-1. All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF SURGICAL RESECTION

• Surgical resection should be performed on carefully evaluated patients by board-certified thoracic surgeons. Locally advanced (unresectable) and resectable stage ≥ II cases should be discussed and evaluated by a multidisciplinary team.
• Surgical biopsy should be avoided if a resectable thymoma is strongly suspected based on clinical and radiologic features.
• Biopsy of a possible thymoma should avoid a transpleural approach.
• Prior to surgery, patients should be evaluated for signs and symptoms of myasthenia gravis and should be medically controlled prior to undergoing surgical resection.
• Goal of surgery is complete excision of the lesion with total thymectomy and complete resection of contiguous and noncontiguous disease.
• Complete resection may require the resection of adjacent structures, including the pericardium, phrenic nerve, pleura, lung, and even major vascular structures. Bilateral phrenic nerve resection should be avoided due to severe respiratory morbidity.
• Surgical clips should be placed at the time of resection to areas of close margins, residual disease, or tumor adhesion to unresected normal structures to help guide accurate radiation therapy when indicated.
• During thymectomy, the pleural surfaces should be examined for pleural metastases. If feasible, resection of pleural metastases to achieve complete gross resection is appropriate.
• Minimally invasive procedures are not routinely recommended due to the lack of long-term data. However, minimally invasive procedures may be considered for clinical stage I-II if all oncologic goals can be met as in standard procedures, and if performed in specialized centers by surgeons with experience in these techniques.1-6

Note: For more information regarding the categories and definitions used for the NCCN Evidence Blocks™, see page EB-1.
General Principles

• Recommendations regarding RT should be made by a board-certified radiation oncologist.

• Definitive RT should be given for patients with unresectable disease (if disease progresses on induction chemotherapy), incompletely resected invasive thymoma or thymic carcinoma, or as adjuvant therapy after chemotherapy and surgery for patients with locally advanced disease.

• Radiation oncologists need to communicate with the surgeon to review the operative findings and to help determine the target volume at risk. They also need to communicate with the pathologist regarding the detailed pathology on histology, disease extent such as extracapsular extension, and surgical margins.

• The review of preoperative imaging and co-registration of preoperative imaging into the planning system are helpful in defining treatment volumes.

• Acronyms and abbreviations for RT are the same as listed in the Principles of Radiation Therapy for NCCN Guidelines for Non-Small Cell Lung Cancer.

Radiation Dose

• The dose and fractionation schemes of RT depend on the indication of the radiation and the completeness of surgical resection in postoperative cases.

• A dose of 60 to 70 Gy should be given to patients with unresectable disease.

• For adjuvant treatment, the radiation dose consists of 45 to 50 Gy for clear/close margins and 54 Gy for microscopically positive resection margins. A total dose of 60–70 Gy should be given to patients with gross residual disease (similar to patients with unresectable disease), when conventional fractionation (1.8–2.0 Gy per daily fraction) is applied.

• Depending on the treatment objectives in the palliative setting, typical palliative doses (eg, 8 Gy in a single fraction, 20 Gy in 5 fractions, 30 Gy in 10 fractions) up to definitive doses for more durable local control and highly conformal techniques for limited volume metastases may be appropriate, given the relatively long natural history of even metastatic thymoma.
PRINCIPLES OF RADIATION THERAPY

Radiation Volume
• The gross tumor volume should include any grossly visible tumor. Surgical clips indicative of gross residual tumor should be included for postoperative adjuvant RT.
• The clinical target volume (CTV) for postoperative RT should encompass the entire thymus (for partial resection cases), surgical clips, and any potential sites with residual disease. The CTV should be reviewed with the thoracic surgeon.
• Extensive elective nodal irradiation (ENI) (entire mediastinum and bilateral supraclavicular nodal regions) is not recommended, as thymomas do not commonly metastasize to regional lymph nodes.5
• The planning target volume (PTV) should consider the target motion and daily setup error. The PTV margin should be based on the individual patient’s motion, simulation techniques used (with and without inclusion motion), and reproducibility of daily setup of each clinic.

Radiation Techniques
• CT-based planning is highly recommended. CT scans should be taken in the treatment position with arms raised above the head (treatment position). Simulations of target motion are encouraged whenever possible. CT scans can be performed at the end of natural inhale, exhale, and under free breathing when more sophisticated techniques like 4D-CT, gated CT, or active breathing control are not available. Target motion should be managed using the Principles of Radiation Therapy in the NCCN Guidelines for Non-Small Cell Lung Cancer. Intravenous contrast is beneficial in the unresectable setting.
• Radiation beam arrangements should be selected based on the shape of PTV aiming to confine the prescribed high dose to the target and minimize dose to adjacent critical structures. Anterior-posterior and posterior-anterior ports weighing more anteriorly, or wedge pair technique may be considered. These techniques, although commonly used during the traditional 2-D era, can generate an excessive dose to normal tissue. A dose-volume histogram of the lungs, heart, and cord need to be carefully reviewed for each plan.
• RT should be given by 3-D conformal technique to reduce surrounding normal tissue damage (eg, heart, lungs, esophagus, spinal cord). Intensity-modulated RT (IMRT) may further improve the dose distribution and decrease the dose to the normal tissue as indicated. If IMRT is applied, the ASTRO/ACR IMRT guidelines should be strictly followed.6,7
• In addition to following the normal tissue constraints recommendation using the Principles of Radiation Therapy in the NCCN Guidelines for Non-Small Cell Lung Cancer, more conservative limits are recommended to minimize the dose volumes to all the normal structures. Since these patients are younger and mostly long-term survivors, the mean total dose to the heart should be as low as reasonably achievable to potentially maximize survival.
• Proton beam therapy (PBT) has been shown to improve the dosimetry compared to IMRT allowing better sparing of the normal organs (lungs, heart, and esophagus).8 Additionally, favorable results in terms of both local control and toxicity have been obtained with PBT.9 Based on these data, PBT may be considered in certain circumstances.
PRINCIPLES OF RADIATION THERAPY
REFERENCES

PRINCIPLES OF SYSTEMIC THERAPY FOR THYMIC MALIGNANCIES

FIRST-LINE COMBINATION CHEMOTHERAPY REGIMENS

- CAP\(^1\) (preferred for thymoma)

 - Cisplatin 50 mg/m\(^2\) IV day 1
 - Doxorubicin 50 mg/m\(^2\) IV day 1
 - Cyclophosphamide 500 mg/m\(^2\) IV day 1

 Administered every 3 weeks

- CAP with prednisone\(^2\)

 - Cisplatin 30 mg/m\(^2\) days 1–3
 - Doxorubicin, 20 mg/m\(^2/d\) IV continuous infusion on days 1–3
 - Cyclophosphamide 500 mg/m\(^2\) IV on day 1
 - Prednisone 100 mg/day days 1–5

 Administered every 3 weeks

- ADOC\(^3\)

 - Cisplatin 50 mg/m\(^2\) IV day 1
 - Doxorubicin 40 mg/m\(^2\) IV day 1
 - Vincristine 0.6 mg/m\(^2\) IV day 3
 - Cyclophosphamide 700 mg/m\(^2\) IV day 4

 Administered every 3 weeks

- Etoposide/ifosfamide/cisplatin\(^5\)

 - Etoposide 75 mg/m\(^2\) on days 1–4
 - Ifosfamide 1.2 g/m\(^2\) on days 1–4
 - Cisplatin 20 mg/m\(^2\) on days 1–4

 Administered every 3 weeks

- PE\(^4\)

 - Cisplatin 60 mg/m\(^2\) IV day 1
 - Etoposide 120 mg/m\(^2/d\) IV days 1–3

 Administered every 3 weeks

- Carboplatin/paclitaxel\(^6\) (preferred for thymic carcinoma)

 - Carboplatin AUC 6
 - Paclitaxel 200 mg/m\(^2\)

 Administered every 3 weeks

SECOND-LINE SYSTEMIC THERAPY

- Sunitinib (thymic carcinomas only)\(^7\)
- Pemetrexed\(^8\)
- Everolimus\(^9\)
- Paclitaxel\(^10-11\)
- Octreotide (including LAR) +/- prednisone\(^12\)
- Gemcitabine ± capecitabine\(^13,14\)
- 5-FU and leucovorin\(^15\)
- Etoposide\(^4,16,17\)
- Ifosfamide\(^18\)
- Pembrolizumab (thymic carcinomas only)\(^1,19,20\)

\(^1\)Pembrolizumab is not recommended for patients with thymoma. In patients with thymic carcinoma, there is concern for a higher rate of immune-related adverse events than seen in most other malignancies treated with PD-1/PD-L1 inhibitor therapy. For example, grade 3–4 myocarditis has been reported in 5%–9% of patients receiving pembrolizumab.

Note: For more information regarding the categories and definitions used for the NCCN Evidence Blocks™, see page EB-1.

All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
First-Line Combination Chemotherapy Regimens

<table>
<thead>
<tr>
<th>First-line therapy after R2 resection (THYM-3)</th>
<th>First-line chemotherapy for metastatic thymomas (THYM-4)</th>
<th>Postoperative chemotherapy for metastatic thymomas (THYM-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT + carboplatin/paclitaxel</td>
<td>Carboplatin/paclitaxel</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/cyclophosphamide/doxorubicin</td>
<td>Cisplatin/cyclophosphamide/doxorubicin</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/cyclophosphamide/doxorubicin/prednisone</td>
<td>Cisplatin/cyclophosphamide/doxorubicin/prednisone</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/cyclophosphamide/doxorubicin/vincristine</td>
<td>Cisplatin/cyclophosphamide/doxorubicin/vincristine</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/etoposide</td>
<td>Cisplatin/etoposide</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/etoposide/ifosfamide</td>
<td>Cisplatin/etoposide/ifosfamide</td>
<td></td>
</tr>
</tbody>
</table>

Second-Line Systemic Therapy

<table>
<thead>
<tr>
<th>Recurrent thymomas (THYM-4)</th>
<th>Etoposide</th>
<th>Everolimus</th>
<th>5-Fluorouracil/leucovorin</th>
<th>Gemcitabine</th>
<th>Gemcitabine/capecitabine</th>
<th>Ifosfamide</th>
<th>Octreotide</th>
<th>Octreotide/prednisone</th>
<th>Octreotide long-acting release</th>
<th>Octreotide long-acting release/prednisone</th>
<th>Paclitaxel</th>
<th>Pemetrexed</th>
</tr>
</thead>
<tbody>
<tr>
<td>E = Efficacy of Regimen/Agent</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
EVIDENCE BLOCKS FOR THYMIC CARCINOMAS

FIRST-LINE COMBINATION CHEMOTHERAPY REGIMENS

<table>
<thead>
<tr>
<th>First-line therapy after R1 or R2 resection (THYM-3)</th>
<th>First-line chemotherapy for metastatic thymic carcinomas (THYM-4)</th>
<th>Postoperative chemotherapy for metastatic thymic carcinomas (THYM-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT + carboplatin/paclitaxel</td>
<td>Carboplatin/paclitaxel</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/cyclophosphamide/doxorubicin</td>
<td>Cisplatin/cyclophosphamide/doxorubicin</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/cyclophosphamide/doxorubicin/prednisone</td>
<td>Cisplatin/cyclophosphamide/doxorubicin/prednisone</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/cyclophosphamide/doxorubicin/vincristine</td>
<td>Cisplatin/cyclophosphamide/doxorubicin/vincristine</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/etoposide</td>
<td>Cisplatin/etoposide</td>
<td></td>
</tr>
<tr>
<td>RT + cisplatin/etoposide/ ifosfamide</td>
<td>Cisplatin/etoposide/ ifosfamide</td>
<td></td>
</tr>
</tbody>
</table>

SECOND-LINE SYSTEMIC THERAPY

<table>
<thead>
<tr>
<th>Recurrent thymic carcinomas (THYM-4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etoposide</td>
</tr>
<tr>
<td>Everolimus</td>
</tr>
<tr>
<td>5-Fluorouracil/leucovorin</td>
</tr>
<tr>
<td>Gemcitabine</td>
</tr>
<tr>
<td>Gemcitabine/capecitabine</td>
</tr>
<tr>
<td>Ifosfamide</td>
</tr>
<tr>
<td>Octreotide</td>
</tr>
<tr>
<td>Octreotide/prednisone</td>
</tr>
<tr>
<td>Octreotide long-acting release</td>
</tr>
<tr>
<td>Octreotide long-acting release/prednisone</td>
</tr>
<tr>
<td>Paclitaxel</td>
</tr>
<tr>
<td>Pembrolizumab</td>
</tr>
<tr>
<td>Pemetrexed</td>
</tr>
<tr>
<td>Sunitinib</td>
</tr>
</tbody>
</table>

Note: For more information regarding the categories and definitions used for the NCCN Evidence Blocks™, see page EB-1. All recommendations are category 2A unless otherwise indicated. Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.
PRINCIPLES OF SYSTEMIC THERAPY FOR THYMIC MALIGNANCIES

REFERENCES

WORLD HEALTH ORGANIZATION HISTOLOGIC CLASSIFICATION

<table>
<thead>
<tr>
<th>Thymoma subtype</th>
<th>Obligatory criteria</th>
<th>Optional criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type A</td>
<td>Occurrence of bland, spindle shaped epithelial cells (at least focally); paucity(^a) or absence of immature (TdT+) T cells throughout the tumor</td>
<td>Polygonal epithelial cells CD20+ epithelial cells</td>
</tr>
<tr>
<td>Atypical type A variant</td>
<td>Criteria of type A thymoma; in addition: comedo-type tumor necrosis; increased mitotic count (>4/2mm(^2)); nuclear crowding</td>
<td>Polygonal epithelial cells CD20+ epithelial cells</td>
</tr>
<tr>
<td>Type AB</td>
<td>Occurrence of bland, spindle shaped epithelial cells (at least focally); abundance(^a) of immature (TdT+) T cells focally or throughout tumor</td>
<td>Polygonal epithelial cells CD20+ epithelial cells</td>
</tr>
<tr>
<td>Type B1</td>
<td>Thymus-like architecture and cytology: abundance of immature T cells, areas of medullary differentiation (medullary islands); paucity of polygonal or dendritic epithelia cells without clustering (i.e.<3 contiguous epithelial cells)</td>
<td>Hassall’s corpuscles; perivascular spaces</td>
</tr>
<tr>
<td>Type B2</td>
<td>Increased numbers of single or clustered polygonal or dendritic epithelial cells intermingled with abundant immature T cells</td>
<td>Medullary islands; Hassall’s corpuscles; perivascular spaces</td>
</tr>
<tr>
<td>Type B3</td>
<td>Sheets of polygonal slightly to moderately atypical epithelial cells; absent or rare intercellular bridges; paucity or absence of intermingled TdT+ T cells</td>
<td>Hassall’s corpuscles; perivascular spaces</td>
</tr>
<tr>
<td>MNT(^b)</td>
<td>Nodules of bland spindle or oval epithelial cells surrounded by an epithelial cell-free lymphoid stroma</td>
<td>Lymphoid follicles; monoclonal B cells and/or plasma cells (rare)</td>
</tr>
<tr>
<td>Metaplastic thymoma</td>
<td>Biphasic tumor composed of solid areas of epithelial cells in a background of bland-looking spindle cells; absence of immature T cells</td>
<td>Pleomorphism of epithelial cells; actin, keratin, or EMA-positive spindle cells</td>
</tr>
<tr>
<td>Rare others(^c)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Paucity versus abundance: any area of crowded immature T cells or moderate numbers of immature T cells in >10% of the investigated tumor are indicative of “abundance.”

\(^b\)MNT, micronodular thymoma with lymphoid stroma.

\(^c\)Microscopic thymoma; sclerosing thymoma, lipofibroadenoma.

1Reprinted from J Thorac Oncol, 10, Marx A, Chan JK, Coindre JM, et al., The 2015 World Health Organization Classification of Tumors of the Thymus: Continuity and Changes, 1383-1395, 2015, with permission from Elsevier.
Staging

Table 1. Modified Masaoka clinical staging of thymoma

<table>
<thead>
<tr>
<th>Masaoka Stage</th>
<th>Diagnostic Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>Macroscopically and microscopically completely encapsulated</td>
</tr>
</tbody>
</table>
| Stage II | (A) Microscopic transcapsular invasion
(B) Macroscopic invasion into surrounding fatty tissue or grossly adherent to but not through mediastinal pleura or pericardium |
| Stage III | Macroscopic invasion into neighboring organs (ie, pericardium, great vessels, lung)
(A) Without invasion of great vessels
(B) With invasion of great vessels |
| Stage IV | (A) Pleural or pericardial dissemination
(B) Lymphogenous or hematogenous metastasis |

2. Note that the Masaoka staging system is also used to stage thymic carcinomas.
Table 2.
Definitions for TNM**,***

<table>
<thead>
<tr>
<th>T Categories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>T1</td>
<td>Tumor encapsulated or extending into the mediastinal fat; may involve the mediastinal pleura</td>
</tr>
<tr>
<td>T1a</td>
<td>Tumor with no mediastinal pleura involvement</td>
</tr>
<tr>
<td>T1b</td>
<td>Tumor with direct invasion of mediastinal pleura</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor with direct invasion of the pericardium (either partial or full thickness)</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor with direct invasion into any of the following: lung, brachiocephalic vein, superior vena cava, phrenic nerve, chest wall, or extrapericardial pulmonary artery or veins</td>
</tr>
<tr>
<td>T4</td>
<td>Tumor with invasion into any of the following: aorta (ascending, arch, or descending) arch vessels, intrapericardial pulmonary artery, myocardium, trachea, esophagus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N Categories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis in anterior (perithymic) lymph nodes</td>
</tr>
<tr>
<td>N2</td>
<td>Metastasis in deep intrathoracic or cervical lymph nodes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M Categories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>No pleural, pericardial, or distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Pleural, pericardial, or distant metastasis</td>
</tr>
<tr>
<td>M1a</td>
<td>Separate pleural or pericardial nodule(s)</td>
</tr>
<tr>
<td>M1b</td>
<td>Pulmonary intraparenchymal nodule or distant organ metastasis</td>
</tr>
</tbody>
</table>

AJCC Prognostic Groups

<table>
<thead>
<tr>
<th>Stage</th>
<th>T Category</th>
<th>N Category</th>
<th>M Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1a,b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIA</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIB</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IVA</td>
<td>Any T</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>IVB</td>
<td>Any T</td>
<td>N0-N1</td>
<td>M1a</td>
</tr>
<tr>
<td>IVA</td>
<td>Any T</td>
<td>Any N</td>
<td>M1b</td>
</tr>
<tr>
<td>IVB</td>
<td>Any T</td>
<td>Any N</td>
<td>M1b</td>
</tr>
</tbody>
</table>

*Involvement must be microscopically confirmed in pathological staging, if possible.

**T categories are defined by “levels” of invasion; they reflect the highest degree of invasion regardless of how many other (lower-level) structures are invaded. T1, level 1 structures: thymus, anterior mediastinal fat, mediastinal pleura; T2, level 2 structures: pericardium; T3, level 3 structures: lung, brachiocephalic vein, superior vena cava, phrenic nerve, chest wall, hilar pulmonary vessels; T4, level 4 structures: aorta (ascending, arch, or descending), arch vessels, intrapericardial pulmonary artery, myocardium, trachea, esophagus.

NCCN Guidelines Version 2.2019
Thymomas and Thymic Carcinomas

Discussion

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2A: Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise indicated.

Table of Contents

Overview ... MS-2
Literature Search Criteria and Guidelines Update Methodology MS-2
Mediastinal Masses ... MS-2
Thymic Masses ... MS-3
 Diagnosis .. MS-3
 Staging ... MS-4
 Treatment ... MS-4
Thymomas .. MS-4
Thymic Carcinomas .. MS-7
Summary ... MS-8
References .. MS-10
Overview
Thymic epithelial tumors originate in the thymus and include thymomas and thymic carcinomas.1,2 Thymomas are a common primary tumor in the anterior mediastinum, although they are rare (1.5 cases/million).3-6 Thymic carcinomas are very rare. Although thymomas can spread locally, they are much less invasive than thymic carcinomas.4 Patients with thymic carcinomas often present with metastases.7 Patients with thymomas have 5-year survival rates of approximately 90%.8-10 However, 5-year survival rates for thymic carcinomas are approximately 55%.11-13

These NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) focus on thymomas and thymic carcinomas and outline the evaluation, treatment, and management of these mediastinal tumors; these NCCN Guidelines® were first published in 2007 and have been subsequently updated every year. The Summary of the Guidelines Updates section in the algorithm briefly describes the new changes for 2019, which are described in greater detail in this revised Discussion text; new references have been added. Additional supplementary material in the NCCN Guidelines for Thymomas and Thymic Carcinomas includes the Principles of Surgical Resection, Principles of Radiation Therapy, Principles of Systemic Therapy for Thymic Malignancies, and the World Health Organization Histologic Classification. These NCCN Guidelines for Thymomas and Thymic Carcinomas were developed and are updated by panel members who are also on the NCCN Guidelines for Non-Small Cell Lung Cancer Panel. All recommendations are category 2A unless otherwise indicated. Category 2A recommendations are based on lower-level evidence (eg, phase 2 trials, case reports), and there is uniform NCCN consensus that the intervention is appropriate (ie, ≥85% of panel members agree).

Literature Search Criteria and Guidelines Update Methodology
An electronic search of the PubMed database was performed to obtain key literature in Thymomas and Thymic Carcinomas using the following search terms: Thymomas; Thymic Carcinomas. The PubMed database was chosen, because it is the most widely used resource for medical literature and indexes peer-reviewed biomedical literature. The search results were narrowed by selecting studies in humans published in English. Results were confined to the following article types: Clinical Trial, Phase 1; Clinical Trial, Phase 2; Clinical Trial, Phase 3; Clinical Trial, Phase 4; Guideline; Meta-Analysis; Randomized Controlled Trial; Systematic Reviews; and Validation Studies.

The data from key PubMed articles selected by the NCCN Panel for review during the NCCN Guidelines update meeting, as well as articles from additional sources deemed as relevant to these Guidelines and discussed by the NCCN Panel, have been included in this version of the Discussion section (eg, e-publications ahead of print, meeting abstracts). If high-level evidence is lacking, recommendations are based on the panel’s review of lower-level evidence and expert opinion. The complete details of the development and update of the NCCN Guidelines are available at www.NCCN.org.

Mediastinal Masses
Masses in the anterior mediastinum can be neoplasms (eg, thymomas, lymphomas, thymic carcinomas, thymic carcinoids, thymolipomas, germ cell tumors, lung metastases) or non-neoplastic conditions (eg, intrathoracic goiter, thymic cysts, lymphangiomas, aortic aneurysms).5,14-17 Many mediastinal masses are benign, especially those occurring in asymptomatic patients; however, symptomatic patients often have malignant mediastinal lesions. All patients with a mediastinal mass should be evaluated to determine the type of mass and the extent of disease.
before treatment (see Initial Evaluation in the algorithm). It is essential to
differentiate between thymic malignancies and other conditions (eg, lung
metastases, lymphoma, goiter, germ cell tumors) before treatment,
because management differs for these conditions.1,18,19 Most masses in
the mediastinum are metastases from a primary lung cancer (eg,
non-small cell lung cancer). However, about 50% of primary cancers in the
anterior mediastinum are thymomas.20

Patients with thymomas often have an indolent presentation, whereas
those with lymphoma or germ cell tumors have a rapid onset of
symptoms.19 Lymphomas typically manifest as generalized disease but
can also be primary anterior mediastinal lesions (ie, nodular sclerosing
Hodgkin’s disease, non-Hodgkin’s lymphomas [diffuse large B-cell
lymphoma and acute lymphoblastic lymphoma]); patients typically have
lymphadenopathy (see the NCCN Guidelines for Hodgkin Lymphoma and
the NCCN Guidelines for Non-Hodgkin’s Lymphomas, available at
www.NCCN.org).17,21 Thymic carcinoids are rare neuroendocrine tumors
that can be associated with multiple endocrine neoplasia type 1 (MEN1)
syndrome (see the NCCN Guidelines for Neuroendocrine Tumors,
available at www.NCCN.org).22,23 Extragonadal germ cell tumors are rare
tumors that may also occur in the mediastinum.24,25

Low-dose CT is recommended for detecting lung cancer in individuals at
high risk (see the NCCN Guidelines for Lung Cancer Screening, available
at www.NCCN.org).26 There are no data to suggest that screening with
low-dose CT improves survival for patients with thymomas and thymic
carcinomas; therefore, low-dose CT screening is not recommended for
detecting thymomas and thymic carcinomas.26 However, mediastinal
masses (eg, lung metastases, thymomas, thymic carcinomas) may be
detected in individuals undergoing chest imaging.

Recommended tests for assessing mediastinal masses include chest CT
with contrast and blood chemistry studies (see Initial Evaluation in the
algorithm).15,27-35 On CT, a thymoma is usually a well-defined round or oval
mass in the thymus without lymph node enlargement.33,36,37 In patients
who cannot tolerate iodinated contrast, chest MRI is indicated.33
Combined PET/CT may be useful for determining whether extrathoracic
metastases are present.38,39 PET/CT provides better correlation with
anatomic structures than PET alone. For the 2019 update (Version 1), the
NCCN Panel clarified that PET/CT scans are whole body or skull base to
mid-thigh, as clinically indicated. Alpha-fetoprotein (AFP) levels and beta–
human chorionic gonadotropin (beta-hCG) levels may be measured to rule
out germ cell tumors (see Initial Evaluation in the algorithm). Thymic
epithelial tumors are likely if the following are present: 1) a well-defined
mediastinal mass in the thymic bed that is not continuous with the thyroid
gland; 2) tumor markers for AFP or beta-hCG are negative; and 3) no
other adenopathy is present.1,2,40

Thymic Masses

Diagnosis

The WHO histologic classification system can be used to distinguish
between thymomas, thymic carcinomas, and thymic carcinoids (see the
algorithm).2,41 The WHO classification is also used to differentiate among
different histologic types of thymomas (ie, A, AB, B1, B2, B3); however, it
is difficult to classify thymomas.42 The WHO histologic classification
system was revised in 2015.1,2 Thymic carcinomas are type C in the
WHO classification, although they are very different from thymomas and
are not advanced thymomas (see Thymic Carcinomas in this
Discussion).2,43 However, the histologic subtype is less important for
management than stage of disease and the extent of resection (ie, R0,
R1, R2) (see Postoperative Treatment and Management in the
algorithm).12,44-48 For stage III to IV thymomas, 5-year survival rates have
been reported to be 90% in patients with total resection.8,12 For thymic
carcinomas, 5-year survival rates are lower, even in those with total
resection.11,49
Staging

Although several staging systems exist, the Masaoka staging system has been the most widely accepted system for management and determination of prognosis for both thymomas and thymic carcinomas (see Table 1 in the algorithm).10,12,50-56 A new staging system for thymomas and thymic carcinomas is based on a combined effort by the International Thymic Malignancy Interest Group (ITMIG) and International Association for the Study of Lung Cancer (IASLC); this staging system was used as the basis for the new AJCC TNM system for thymic malignancies (8th edition).40,57-62 Clinicians may find it useful to use both the Masaoka and the AJCC TNM staging systems.2,58 The new staging system for thymic malignancies from the AJCC (8th edition) became effective on January 1, 2018 (see Table 2 in the algorithm).1,63 Patients with stage I to III thymomas have a 5-year survival rate of approximately 85% versus 65% for those with stage IV disease.10,64,65 In approximately 50% of patients, mortality is not related to thymoma.51 Mortality is related to myasthenia gravis in approximately 20% of patients.

Treatment

The optimal plan of care for patients with thymic malignancies should be developed before treatment, after evaluation by radiation oncologists, thoracic surgeons, medical oncologists, and diagnostic imaging specialists.66,67 It is critical to determine whether the mass can be surgically resected; a board-certified thoracic surgeon with a primary focus on thoracic oncology should make this decision. Total thymectomy and complete surgical excision of the tumor are recommended whenever possible for most resectable tumors (see Principles of Surgical Resection in the algorithm).10,12,19,68-70 During thymectomy, the pleural surfaces should be examined for metastases. To achieve a complete gross resection, removal of pleural metastases may be appropriate in some patients.71-73 Core needle or open biopsy is recommended for locally advanced, unresectable thymic masses. The cancer protocol for thymic tumors from the College of American Pathologists may be useful for assessing specimens.74

Minimally invasive procedures are not routinely recommended, because only a few long-term studies are available regarding recurrence and survival.76-77 However, minimally invasive procedures may be considered if recommended oncologic goals can be met (as previously described) and if performed in specialized centers with surgeons with expertise in these techniques.77-81 A systematic review of 1061 patients with thymomas reported that 5-year overall survival after video-assisted thoracoscopic surgery (VATS: 83%–100% vs. open: 79%–98%) and 10-year recurrence-free survival (VATS: 89%–100% vs. open: 80%–93%) were similar in patients undergoing VATS compared to open thymectomy, although outcomes may be skewed due to selection bias.75 A retrospective review in 2835 patients assessed VATS thymectomy compared with sternotomy in patients with thymomas.82 The 5-year overall survival rate was 97.9% in the VATS group. The overall survival rates were not significantly different when comparing the VATS group versus the sternotomy group ($P = .74$). A meta-analysis also showed that VATS was safe and patients had similar overall survival when compared with those receiving open thymectomy.83

Thymomas

Thymomas typically occur in adults 40 to 70 years of age; they are rare in children and adolescents.19,84 The etiology of thymomas is unknown; alcohol, tobacco smoking, and ionizing radiation do not appear to be risk factors for thymomas.3 The incidence of thymomas is higher in African Americans as well as Asians and Pacific Islanders, which suggests there may be a genetic component.3,85 Although some patients are asymptomatic, others present with chest pain, cough, or dyspnea. Patients with thymomas often have autoimmune diseases. Approximately 30% to 50% of patients with thymomas have myasthenia gravis.86 Symptoms
suggestive of myasthenia gravis include drooping eyelids, double vision, drooling, difficulty climbing stairs, hoarseness, and/or dyspnea. Before any surgical procedure, all patients suspected of having thymomas (even those without symptoms) should have their serum antiacetylcholine receptor antibody levels measured to determine whether they have myasthenia gravis to avoid respiratory failure during surgery. If patients have myasthenia gravis, they should receive treatment by a neurologist with experience in myasthenia gravis before undergoing surgical resection.

Although thymomas can be locally invasive (eg, pleura, lung), they uncommonly spread to regional lymph nodes or extrathoracic sites. Surgery (ie, total thymectomy and complete excision of tumor) is recommended for all resectable thymomas for patients who can tolerate the surgery. For resected stage I and II thymomas, the 10-year survival rate is excellent (approximately 90% and 70%, respectively). Completeness of resection is the most important predictor of outcome. Surgical biopsy is not necessary if a resectable thymoma is strongly suspected based on clinical and radiologic features (eg, patients have myasthenia gravis and a characteristic mass on CT). A transpleural approach should be avoided during biopsy of a possible thymoma to prevent tumor seeding. Small biopsy sampling (fine-needle or core needle biopsy) does not always indicate whether invasion is present. ITMIG and CAP have established procedures for reporting the surgical and pathologic findings from resection specimens.

Adjuvant therapy is not recommended for completely resected (R0) stage I thymomas. For incompletely resected thymomas, postoperative RT is recommended (see Postoperative Treatment and Management in the algorithm). Note that extensive elective nodal radiation is not recommended, because thymomas do not typically metastasize to regional lymph nodes. CT-based treatment planning is highly recommended before RT (see Principles of Radiation Therapy in the algorithm). RT should be given by the 3D conformal technique to reduce damage to surrounding normal tissue (eg, heart, lungs, esophagus, spinal cord). Use of intensity-modulated RT (IMRT) may decrease the dose to the normal tissues. If IMRT is used, guidelines from the NCI Advanced Technology Center (ATC) and ASTRO/ACR should be followed. The ICRU-83 (International Commission on Radiation Units and Measurements Report 83) recommendations are also a useful resource. Although the normal tissue constraints recommendations for lung cancer may be used (see the Principles of Radiation Therapy in the NCCN Guidelines for Non-Small Cell Lung Cancer, available at www.NCCN.org), more conservative limits are recommended to minimize the dose volumes to all the normal structures. Because these patients are younger and usually long-term survivors, the mean dose to the heart should be as low as reasonably achievable. Note that the normal tissue dose-volume constraints for the lung, heart, spinal cord, esophagus, and brachial plexus for conventionally fractionated chemoradiation were revised for the 2019 update (Version 1) (see the Principles of Radiation Therapy in the NCCN Guidelines for Non-Small Cell Lung Cancer).

A definitive dose of 60 to 70 Gy is recommended for patients with unresectable disease. For adjuvant treatment, a dose of 45 to 50 Gy is recommended for clear or close margins; a dose of 54 Gy is recommended for microscopically positive resection margins (see Principles of Radiation Therapy in the algorithm). However, a total dose of 60 to 70 Gy (1.8–2 Gy/fraction per day) is recommended for patients with gross residual disease after surgery. In patients with thymomas who have capsular invasion after an R0 resection, postoperative RT can be considered (see Postoperative Treatment and
Management in the algorithm).101,105,118-120 Patients with stage III (with macroscopic invasion into neighboring organs) thymoma have higher risks of recurrent disease and, as such, postoperative radiation is recommended.121-124 Data suggest that patients with stage II thymoma may not benefit from postoperative radiation.69,100,101,119,125 Postoperative chemotherapy is also not beneficial in this setting.126,127

Induction therapy followed by surgery may be useful for potentially resectable thymic malignancies.49,128-133 A recent cohort study reported that 5-year overall survival was similar for those receiving induction chemotherapy followed by surgery versus surgery alone (77.4\% vs. 76.7\%, \(P = .596 \)).126 For locally advanced thymomas, induction chemotherapy is recommended followed by an evaluation for surgery; postoperative RT can be considered after surgical resection of the primary tumor and isolated metastases (see Postoperative Treatment and Management in the algorithm).133,134 For those with solitary metastasis or ipsilateral pleural metastases, options include: 1) induction chemotherapy followed by surgery for resectable patients; or 2) surgery alone.128,129 After induction chemotherapy, imaging is recommended (eg, chest CT, MRI, PET/CT) as clinically indicated to determine whether resection is feasible. For patients with unresectable disease in both of these settings, RT with [or without] chemotherapy is recommended. It is difficult to specify RT dosing regimens for metastatic disease given the very broad range of metastatic scenarios that are possible. Stereotactic body radiation therapy (SBRT) may be appropriate for limited focal metastases, whereas conventional fractionation is appropriate for larger metastases. In the palliative setting, typical palliative doses may be used—8 Gy in a single fraction, 20 Gy in 5 fractions, or 30 Gy in 10 fractions—depending on the treatment objectives. However, RT dosing can extend up to definitive doses for more durable local control. Highly conformal techniques may be appropriate for limited volume metastases, given the relatively long natural history of even metastatic thymoma.66 For metastatic disease, systemic therapy is recommended (see Principles of Systemic Therapy for Thymic Malignancies in the algorithm).7,101,133,135-147 Six different combination chemotherapy regimens are recommended in the NCCN Guidelines. The NCCN Panel voted that the preferred regimen for thymoma is cisplatin/doxorubicin/cyclophosphamide (CAP), because it seems to yield the best outcomes.69,148-150 Response rates are approximately 44\% with CAP for thymomas.7 However, non-anthracycline regimens (eg, cisplatin/etoposide [with or without ifosfamide], carboplatin/paclitaxel) may be useful for patients who cannot tolerate the more aggressive regimens.150,151

After primary treatment for resectable thymomas, panel members agree that surveillance for recurrence should include chest CT every 6 months for 2 years, then annually for 10 years for thymoma.33 MRI may be used for surveillance for certain clinical situations, including: 1) if patients cannot tolerate contrast; and 2) to decrease radiation if patients are young and will be screened for many years. Given the risk of later recurrence for thymoma, surveillance should continue for at least 10 years. However, the duration, frequency, and type of imaging for surveillance for patients with thymomas have not been established in published studies. Patients with thymoma also have an increased risk for second malignancies, although no particular screening studies are recommended.3,152,153

Second-line systemic therapy for thymomas includes pemetrexed, everolimus, paclitaxel, octreotide (long-acting release [LAR]) with or without prednisone, gemcitabine with or without capecitabine, 5-fluorouracil (5-FU), etoposide, and ifosfamide.136,137,150,154-162 However, none of these agents has been assessed in randomized phase 3 trials, because there are not enough patients with thymic malignancies to do large trials. For thymomas, response rates for subsequent systemic therapy (ie, second-line and beyond) range from 15\% to 39\%.7 Panel members feel that pemetrexed and paclitaxel are more efficacious as
second-line therapy for thymomas than the other recommended agents (see the NCCN Guidelines with Evidence Blocks™ for Thymomas and Thymic Carcinomas, available at www.NCCN.org). A study of pemetrexed in patients with thymoma (n = 16) reported 2 complete responses and 5 partial responses. For the 2019 update (Version 1), the NCCN Panel clarified that capecitabine may be added to gemcitabine based on clinical trial data. In 22 patients with thymomas receiving gemcitabine/capecitabine, there were 3 complete responses and 5 partial responses. Octreotide may be useful in patients with thymoma who have a positive octreotide scan or symptoms of carcinoid syndrome.

Pembrolizumab is not recommended in patients with thymomas because of concerns about immune-related events. Of patients with thymoma receiving pembrolizumab, 71% (5/7) had grade 3 or higher immune-related adverse events including myocarditis. Sunitinib is not recommended in patients with thymomas, because they do not have c-Kit mutations. Surgery is an option for patients with recurrent locally advanced disease, solitary metastases, or ipsilateral metastases.

Thymic Carcinomas

Thymic carcinomas are rare aggressive tumors that often metastasize to regional lymph nodes and extrathoracic sites; thus, they have a worse prognosis than thymomas. Survival rates for thymic carcinomas vary depending on stage (stages 1–2: 91%; stages 3–4: 31%) and resectability (including completeness of resection). These tumors can be distinguished from thymomas because of their malignant histologic features and their different immunohistochemical and genetic features. They are predominantly squamous cell carcinomas and undifferentiated carcinomas. However, thymic carcinomas should be differentiated from primary lung malignancies that metastasize to the thymus and have a similar histologic appearance. Thymic carcinomas often cause pericardial and pleural effusions. The Masaoka staging system and the AJCC TNM staging system can also be used to stage thymic carcinomas (see Tables 1 and 2 in the algorithm).

It is important to note that thymic carcinomas are associated with a different clinical course from thymomas. Unlike thymomas, paraneoplastic syndromes, including myasthenia gravis, are very rare in patients with thymic carcinoma. If myasthenia gravis is diagnosed, then the diagnosis of thymic carcinoma should be reassessed; the patient may actually have thymoma. In contrast to thymomas (which mainly occur in adults), thymic carcinomas occur over a wide age range including adolescents when assessed in a single-institution Western population; they predominantly occur in Caucasian individuals.

Similar to thymomas, patients with completely resected thymic carcinomas have longer survival than those who are either incompletely resected or are unresectable. Patients who have an R0 resection have a 5-year survival of about 60%. Thus, management depends on the extent of resection. Patients with thymic carcinoma have higher risks of recurrent disease; therefore, postoperative radiation is recommended to maximize local control. After resection of thymic carcinomas, postoperative management includes RT with (or without) chemotherapy, depending on the completeness of resection (see Postoperative Treatment and Management in the algorithm). A study suggests that adjuvant therapy may not be necessary for early-stage thymic carcinomas. For unresectable or metastatic thymic carcinomas, chemotherapy with (or without) RT is recommended (see Principles of Systemic Therapy for Thymic Malignancies and Principles of Radiation Therapy in the algorithm).

A definitive dose of 60 to 70 Gy is recommended for patients with unresectable thymic carcinomas. For adjuvant treatment, a dose of 45 to 50 Gy is recommended for clear or close margins; a dose of 54 Gy is recommended for microscopically positive resection margins (see
Principles of Radiation Therapy in the algorithm). However, a total dose of 60 to 70 Gy (1.8–2 Gy/fraction per day) is recommended for patients with gross residual disease after surgery. In patients with thymic carcinomas who have capsular invasion after an R0 resection, postoperative RT can be considered (see Postoperative Treatment and Management in the algorithm). Adjuvant therapy is not recommended for completely resected (R0) stage I thymic carcinomas.

Unfortunately, thymic carcinomas respond poorly to chemotherapy. The NCCN Panel voted that carboplatin/paclitaxel is preferred for first-line therapy, because it has the highest response rate in patients with thymic carcinomas in clinical trials (overall response rate, 22%–36%). Data suggest that the CAP and cisplatin/doxorubicin/vincristine/cyclophosphamide (ADOC) regimens are also effective for thymic carcinomas, but these regimens are more toxic than carboplatin/paclitaxel. Induction chemotherapy is recommended followed by an evaluation for surgery for locally advanced disease; postoperative RT can be considered after surgical resection of the primary tumor and isolated metastases (see Postoperative Treatment and Management in the algorithm). Patients with unresectable disease can then receive RT with [or without] chemotherapy. For those with solitary metastasis or ipsilateral pleural metastases, options include induction chemotherapy or surgery. After primary treatment for resectable disease, panel members agree that surveillance for recurrence should include chest CT every 6 months for 2 years, then annually for 5 years for thymic carcinoma. However, the duration, frequency, or type of imaging for surveillance for thymic carcinomas has not been established in published studies.

For thymic carcinomas, there are little data regarding second-line systemic therapy. Second-line systemic therapy for thymic carcinomas includes sunitinib, pemetrexed, everolimus, paclitaxel, octreotide (LAR) with or without prednisone, gemcitabine with or without capecitabine, 5-FU, etoposide, ifosfamide, and pembrolizumab (see Principles of Systemic Therapy for Thymic Malignancies in the algorithm). For thymic carcinomas, response rates for subsequent systemic therapy range from 4% to 21%. However, panel members voted that these second-line agents are not very efficacious for thymic carcinomas (see the NCCN Guidelines with Evidence Blocks™ for Thymomas and Thymic Carcinomas, available at www.NCCN.org). Sunitinib is recommended for patients with c-Kit mutations; however, these mutations are rare in thymic carcinomas (<10%). Patients with thymomas do not have c-Kit mutations. Pembrolizumab is active (response rate, 22.5% [95% CI, 10.8%–38.5%]) as second-line therapy in patients with thymic carcinomas but is associated with a high rate of severe immune-related adverse events (15%). For example, grade 3 to 4 myocarditis has been reported in 5% to 9% of patients with thymic carcinomas receiving pembrolizumab, which is a higher adverse rate than seen in patients with other malignancies who receive pembrolizumab. For the 2019 update (Version 1), the NCCN Panel now recommends pembrolizumab (category 2A) as second-line systemic therapy for patients with thymic carcinomas based on the clinical data. For the 2019 update (Version 1), the NCCN Panel clarified that capecitabine may be added to gemcitabine based on clinical trial data. There were 3 partial responses in 8 patients with thymic carcinomas receiving gemcitabine/capecitabine.

Summary
These NCCN Guidelines focus on thymomas and thymic carcinomas and outline the evaluation, treatment, and management of these mediastinal
tumors. The *Summary of the Guidelines Updates* section in the algorithm briefly describes the new changes for 2019, which are described in greater detail in this revised Discussion text; references have been added. For the 2019 update (Version 1), panel members voted to add pembrolizumab (category 2A) as second-line therapy for patients with thymic carcinomas with the caveat that pembrolizumab is associated with a high rate of severe immune-related adverse events (15%), including myocarditis.164,197 The NCCN Panel does not recommend pembrolizumab in patients with thymomas because of concerns about immune-related events.164
References

Discussions

112. ICRU Report 83: Prescribing, Recording, and Reporting Intensity Modulated Photon Beam Therapy (IMRT). Journal of the ICRU 2010;10. Available at: https://jicru.oxfordjournals.org/content/10/1.toc.

114. Milano MT, Constine LS, Okunieff P. Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol

